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1.0 INTRODUCTION

Research being performed by the Systems Research

Laboratory (SRL) under contract number N00014-67-A-0181-0012

with the Office of Naval Research is concerned with the

development of more generalized mathematical structures of

military processes. Emphasis has been directed to the modeling

of combat processes and the development of associated allocation

strategies. These efforts all assume perfect intelligence. As

noted in the first progress report (SRL, 1969), intelligence

could reasonably have a large effect on combat effectiveness

predictions, especially when one considers its interaction

with the allocation strategy.

It was thought that many of the existing search and

reconnaissance theories would be useful for predicting the

amount of intelligence-gathering capability possessed by

a tactical unit. A thorough literature review in this area,

however, indicated that existing theories are less than

useful for this purpose. Most of the research efforts have

been devoted to the deVelopment of strategies for the optimal

allocation of search effort and little to the development of

descriptive models of intelligence-gathering processes. The

existing results do not consider important aspects such as

intermittent target visibility, multiple targets, moving targets,

and others. Accordingly, part of the research effort on this
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contract is being devoted to the development of models of

intelligence-gathering processes.

The purpose of this interium technical report is to

pi-sent the results of the literature review both as a base

for our research and to indicate fruitful areas of research

for other investigators. Principal results in the field

and the techniques used in attaining them are presented in

an annotated bibliography. A comprehensive bibliography,

organized under subject classifications, is included. Finally,

some relevant areas for future research are described.

I.i

"I.[
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1.1 Definitions and Notations

This section contains some basic definitions and notations

used throughout the paper. Additional notations and exceptions

to those specified herein will be noted in the text.

Detection - The act of gathering information pertaining to

thn nij,ýct being sought, the sifting out of

what is important information and the relaying

of that information in some efficient form to

the decision maker.

Incremental Detection Model - Let qi be the instantaneous

probability of detection on the ith scan of an

area. Given n such scans, the probability of

detection is

P(D) 1 - (1 - qi).

Continuous Detection Model - The probability of detecting

the target in the interval (t, t + dt) is given

by y(t) dt. Given continuous observance over

an interval (O,T), the probability of detection

is

T

- f y(t) dt
P(T) - e 0
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Search Strategy - The decision made on the basis of information

obtained from the detactinn nnrnac A ,.....

strategy" will be that set of rules which asso-

ciates drcisions with every conceivable result of

the detection process,

Target - The object of the search, a military target, a

mincral •-Ir4t, or any otbhr object dbout which

information is desired.

Notation:

Pi prior probability of the target being in the

ith subregion

qi the conditional probability of detection for

the i th subregion

(Ii = l-q i

- the conditional overlook probability for the

ith subregion

- a search strategy (possibly infinite) where a.J

denotes which region is to be searched on the

jth trial

ci cost of searching the i th subregion

ti the time spent searching the ith subregion

pi



1.2 Classification of Detectors and Targets

Models of search and reconnaissance processes treat

detectors and targets with varied combinations of properties

or assumptions regarding their behavior. This section

presents a classification of analytic assumptions that may

be used to describe the behavior of detectors and targets.

Detectors

1. Single Detector with a Single Scan

a) Binary detection (Incremental Detection Model)

b) Interval detection (Continuous Detection Model)

1) Non-cumulative probability of detection

2) Cumulative probability of detection

(a) partial loss of information

(b) no loss of information

2. Single Detector with Multiple Scan Capability

a) Binary detection

b) Interval detection

1) Non-cumulative probability of detection

2) Cumulative probability of detection

(a) partial loss of information

(b) no loss of information
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3. Multiple Detectors with Single Scan Capability

a) Binary detection

1) Detectors act independentlyI

2) Detectors act dependently

b) Interval detection

1) Independent action

(a) non-cumulative probability of detection

(b) cumulative probability of detection

(1) partial loss of information

(2) no loss of information

2) Dependent action

(a) non-cumulative probability of detection

(b) cumulative probability of detection

(1) partial loss of information

(2) no loss of information

4. Multiple Detectors with Multiple Scan Capability

a) Binary detection

1) Independent action

2) Dependent action

b) Interval detection

1) Independent action

(a) non-cumulative probability of detection

(b) cumulative probability of detection
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(1) part-ial loss of information

(2) no loss of Information

(2) Dependent action

(a) non-cumulative probability of detection

Wb) cumulative probability of detention

1) partial loss of information

2) no loss of information

Targeta

'. Single Target (which may be an entire group)

a) The target can exhibit binary visibility, i.e.,

it is either visible or not with specified

probability.

b) The target may have only a single interval of

visibility, the length of this interval having

a known probability density function.

(1) The single visibility interval can begin

at time t = 0.

(2) The single visibility interval can begin

at some time t 9 0.

c) The target can exhibit multiple periods of

visibility.
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2. Multiple Targets

a) The members act indepentiari+ly aw!th-

(1) binary visibility

(2) single interval visibility

(a) beginning at time t = 0,

(b) beginning at time t 0 0.

b) The members act in a dependent fashion with:

(1) binary visibility

(2) single interval visibility

(a) beginning at time t = 0,

(b) beginning at time t 0 0.

(3) multiple periods of visibility.

The diagram shown in Figure 1 presents, in flow chart

format, the various attributes of search problems and analytic

assumptions used in modeling them. Each paper discussed in

this literature review can be characterized by a path through

the diagram.

1,3 Orgahization of Review

The papers listed in the bibliography (Chapter 6) are

presented in alphabetical order under the general headings

1 The diagram is a modification of one given by-H._ Heian
"An Investigation of Sequential Search Algorithms," Operations
Research, Inc., Silver Spring, Maryland, AD 657050.

L
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noted below. Categories C, D, and E are discussed in

e.•.hatrs. ' 2 ,..and 1, rspectivly. . C... a...c. fo fur ....

research are described in Chapter 5.

(A) General Discussion

This category includes the pioneering work of

Koopman, the applications of Morse and Kimball,

¶ and the bibliographies of Dobbie and Enslow.

(B) Measures of Performance

This category includes papers which consider

various search objectives. Although it is

usually assumed that the objective of search

is the detection of the target, other objectives

such as maximizing the information gain have been

proposed and studied.

(C) Allocation of Effort in One-Sided Search

This category considers the problem of the distri-

bution of effort required to find a target when

the distribution of the target is known to the

searcher. These subheadings are included ýnder

this category.

(1) Stationary Targets

The target is assumed stationary although

some authors consider targets that suddenly

appear and remain visible.

I.
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(2) Large Stationary Targets

The size and shapa n th e tAget m.y h k,

some effect on the formulation and solution r
of the problem. I

(3) Moving Targets

The target is moving without conscious evasion

and the searcher knows the motion or distribution f
of motion. S

(D) Two-Sided Search

This category,which considers the game theoretic-aspects I
of search, investigates the search problem with a

conscious evader. Included in this category are the

search/evasion problems in which the searcher and

evader can alter their motions differentially by
choices of continuously varying parameters, e.g.,

the theory of differential games as formulated by

Isaacs.

(E) Miscellaneous,

This category includes papers containing important

results in the development of search theory and

methodology or application of search concepts to I
the operations of reconnaissance and surveillance.

p

J

b1
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2.0 ALLOCATION OF EFFORT IN ONE-SIDED SEARCH

The purpose of this chapter is to summarize the pub-

lished results obtained to date in regard to the allocation

of effort in the one-sided search for a stationary target.

In this context,the distribution of the target is known to

the searchc: although it may not be present at the start of

the search. The major results of investigations in this area

are presented, as well as the interrelationships between

them, if any. Since the entire field seems to have originated

from the investigations of B. Koopman, these results will be

the starting point of the review.

Koopman (1946) describes two types of detection processes-

the "glimpse" or discrete mode, and the continuous mode. In the

former, one has a single scan or glimpse probability of detection

q. which may be functionally dependent upon range, time, etc.

Given n such looks, the probability of detection is determined as

n

Pn = 1 - (1-qi)
i~ 1

The continuous mode is characterized by the assumption that the

probability of detection in a short time interval of length dt

is given by y(t)dt. Given continuous searching over a time

interval of length t, the probability of detection is given by

- ft y(t)dt: P(t) 1 1- e. oe

kL-
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The optimal allocation of searching effort for a stationary

target was derived by Knn-Ar 4" FHef

Let a stationary target be located in a known region A with

known probability density function p(x,y) continuous in the

region A with the properties

Min (x,y) x p > 0,
A 0

ff p(x,y)dxdy 1.
A

Assume the searcher has certain constraints on the amount of

effort, 0, that can be allocated to the search. Consider a

search uensity function '(x,y) defined on the region A with

the properties that

ff (x,y)dxdy 0 , (I)

O(x,y) > 0 on A. (2)

Assume further that the searcher is operating in the continuous

detection mode. Then the probability of detecting the target,

pie], is given by

pA01 p(x,y) - e dxdy. (3)
A



I The conditional probability of detection, 1 - e-(xy)

is the result of the two-dimensional "law of random search."

The fpvdantal j.ublem is to determine from among all the

j functions satisfying equations 1 and 9 that which gives 3

its maximum value.

J Koopman obtains the optimal solution as

I *(x,y) log p(x,y) - 2 og p(x,y)dxdy + O/A,

A

for

(x,y)c A,

I and

SO(x,y) 0 for (x,y)e A-A.

where

S= :(x~y)IP(x~Y) > b log b - log px,y dxdy + .1

By considering A A1 + A + ---A , one can obtain the solution

to the n region search problem. Some generalizations suggested

•- by Koopman, include the case of visibility varying from

position to position, the case of weighting the probability of

detection by a function dependant upon where the target is

detected, and weighting the search density function by a cost

function dependent upon the region bc.ng searched.

Charnes and Cooper k1958), develop an algorithm for the

solution of a discrete version of Koopman's problem.
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Let (Pj}, j 1 1, 2, ".', N denote the probability that the

target is in the j t h region. Then if { j }, j 1, 2, -, N

denotes the normalizcd search density vector, Koopman's

problem becomes

Min 2: PJe'Bi-00

NS.T. j =1, O • 01
j=l

N

and P j 0, P. 1,

where B is a scale factor relating the allocations, of

search effort to the total amount of search effort available.

The algorithm is obtained from the application of the Kuhn-

Tucker conditions for optimality to the above convex programming

problem.
The detection processes in Koopman's formulations

were quite restrictive. de Guenin (1961) generalized these

processes as follows : Let pie(x)] denote the probability of

detecting the target with an effort N(x) when the target is

at x. The following assumptions are made with rpspect to

(1) p(o) 0

(2) p'(¢) > 0

(3) p'(I) a decreasing function of *
(4) p'(o) > 0, p'(-) -- 0.
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I
From the above properties p'(0) admits of an inverse function

4' f(pV). he basic problem becomes

Max P g(x)p[((x)]dx

f1

IS.T. *(X) > 0

f O(x)

where g(x) is the probability density functioi) for target

I location. de Guenin derives the following necessary

conditions for optimality under the above assumptions.

i Theorem: A necessary condition for p to be optimum is that

at any point x such that O(x) > 0,

I

g(x) Pd I = constant,

I where dO/dp = the marginal effort to increase the detection

probability. One might restate this result as follows:

Whenever the distribution of effort is optimum, the

marginal effort required to increase the detection

probability at any point is proportional to the proba-

bility density, t(x), of the location of the object.
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Koopman (1946) observed that the distribution which

maximizes the detection probability with a given amount of

cffort has the interesting property that it is the sum of

conditionally optimal distributions. That is, the optimal

distribution of E + E2 is the sum of the optimal distribu-

tion of E and the conditionally optimal distribution of E,,

given that the target has not been found with the Previous

distribution of E1 . Ebbie (1963) develops sufficient con-

ditions for this additive property to hold, then shows that

the solution to this class of problems can be attained by

"optimizing conditionally in the small." Let p(x,f(x)), be

the condtional probability that a target at x will be detected

by the searching effort of intensity f(x) at x. If the de-

tection rate, M(x), is independent of the searching effort

f(x), then Dobbie shows that

p(x,f(x)) = 1 - exp[-k(x)f(x)].

Furthermore, it is also shown that if f is a positive

monotonic non-increasing function of f for every x, then the

distribution obtained by maximizing the probability of detection

in-the-small will maximize the overall detection probability.

It is also shown that the expected effort required to detect

the target is given by

Jf Q(E)dE J (I-P(E))dE,

0 0
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p(E) is the probability of detecting the target with effort

ri 1 c -'r1+e --- 'n tc n pa;tilulax cditribtitior~ runction.

From the above equation, one can see that the expected effort

is minimized by always distributing the effort to maximize

the probability of detection with the effort expanded thus

far. In contrast, the distribution that maximizes the proba-

bility of detection with a given amount of effort can be

non-optimal for all values of effort less than the total, as

long as the schedule attains the final distribution when all

the effort has been applied.

Pollock (1960) introduces a discrete search model for

two regions and determines the optimal sequential strategies

for' this model. A single searcher is given the a priori

probability P that the target is in region 1. Conditional

detection probabilities ql and q2 are also given. It is

assumed that each glimpse in either region takes ons unit of

time. As the search progresses, the a posteriori probabilities

are obtained using Bayes' theorem. For example, suppose the

searcher is unsuccessful in his look into region 1, the a

posteriori probability that the target is in that region

is given by

(1-q )p

l-qlp

L
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Similarly, the A posteriori probability of the target being in

region 1, given an unsuccessful look into region 2, is

2-q 2 (l-p)

Let the expected length of search using an arbitrary strategy

be denoted by E(p), where

1 + (l-qlp) E i-q) : Start in #1

ql'qlp

E(p)

1 + (1%IPq2) Start in #2

Pollock shows that the optimal sequence of looks is

determined from the following conditions: Let p denote the

"current" estimate of the probability of the target being in-

region 1, the selection of the next region to be searched is

accomplished via the rule:

"For p 1 q 2/(l+q2)look in box 1, otherwise

look in box 2."

The optimal value of E(p) under the above strategy is determined

via a "bootstrap" technique of extending the region in which the

optimal value of E(p) is known.

p/
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I In comparing the optimal values of the expected length

of search between the discrete and continuous mlodels, Pollo.ck

: I ~observed that for smiall values uE q they ar~e. very close. . .

indeed; however, as q-l they become quite different. He also

observed that the criteria of (1) maxi-mizing the probability

i l of detection by the end of a fixed time; and (2) minimizing

the expected length of time until detection; lead to the same
i!I Iresults for the allocation of effort.

Gilbert (1959) considers the continuous version of the
two-box search problem including non-zero switching times.

IFirst, he notes that in generalsearch, under the assumptions

made up to this point in our discussion, may be coinpared to

a one-person game. Although not solvable as such, he concludes

that all attention should be restricted to pure (deterministic)

,U strategies, rather than mixed (probabilistic) strategies. He

also notes that with p = 1 - p = 1/2, and ql(t) =q 2 () 1 - et,

it is optimal to switch from one box to another whekw\'- r'the box

being searched has received a longer time of sea. "'h :•the

other box. Then, by switching from box to box raji,ý-',•, enough,

one can get expected search times as close to twoý., desired.

This leads to the definition of a "limit strategy," which will

approach the true optimum strategy in the limit as switching

becomes instantaneous. The limit strategy is defined as a

pair of monotone non-decreasing functions x(t) and y(t) such

that
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x(t) + y(t) t, t > 0,

x(L) and y(t) are interpreted as the times which will be

spent (using the optimal strategy) searching boxes A, and A2

respectively when a total time t has been spent searching.

The probability Q(x(t), y(t)) is defined as the probability

that A1 and A2 can be searched for times x and y without

detection, then

Q(x(t), y(t)) = p.[l-ql(x)) + (l-p)[l-q2 (y)J,

ql(x) = l-e SIX

q 2 (y) = l-e" 2y

Since the distribution function for the time spent searching

is l-Q, the optimal strategy is that (x(t), y(t)) which

minimizes

"tdQ(x(t), y(t)) f Q(x(t), y(t))dt.

o o

The solution to the above problem yields the strategy:

(a) For (l-p)a 2 _> p •l, first look in box 2 for
1~ in (P)011

in units of time, then follow the
a2 Pal

limit strategy [
•l = +2 in ]

I7a 12J
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(b) For (l-p)a 2  P'l' first look in box 1 for

i__ units of time, then follow

the limit strategy.

Allowing for a non-zero switching time S, the strategies of

interest become those which follow "staircase" paths in the

S(x,y) plane. If switches occur at the points (xi,yi), i ,

2, ''' then the expected search time of a strategy is

I.0
E J Q(x,y)(dx + dy) + S Q(xiYi)

where the integral is a line integral taken along the staircase

fi path. Gilbert develops the following theorems pertaining

to this case.

Theorem Let C be a line segment between two switch

points (xis y) and (xi+l1 yi+l) of a mini-

mizing strategy. If C is horizontal, there

must be points on C at which Q - Q < 0.

If C is vertical, there exist points of C
at which Q - Qy L 0.

Taeorem Let p = 1-p 1/2, ql(t) = q q(t), and

let the distribution function 1 - q(t) have

mean T. Then bounds on the minimum expected

time Eo are given by
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T + s/2 < E < 2T + S/2 + 2T

The above theorems will yield the optimal solutions in

special cases. For the case in which ql = l'e'X$ and

q 2 =l-e'Y Gilbert determines that the switch points

are (w,o), (w, 2w), (3w, 2w) where w satisfies the equation

S + wo sinh wo,

and the minimum value of E is

S= 1 + cosh 2 (w0 /2).

However, these results will not yield solutions in more

general situations. Kisi (1966) obtained the same result

independently using somewhat more direct arguments.

Blachman (1959) considers the following variation of the

search problem formulated by Koopman. The object is not present

at the beginning of the search but has a distribution of

arrival times, and the aim is not to maximize the probability

of detection but to minimize the expected delay between arrival

and detection. An object may appear in any one of n locations

and will thereafter remain there, the probability of the ith

location being pi, with E pi = 1. The time of appearance of

the object is distributed uniformly over a long interval of

length T. A look in the ith location takes a time ti and, if

the object is there, the look detects it with probability qi"

.1
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I
The basic question is: In what order should the various

locations be scanned during the time T to minimize the

expected delay between the appearance of the object and its

detection? The search pattern is characterized by the inter-

vals Tij between the beginning of the (j- 1 )t look in the

tih location and the beginning of the 1 th. Til is defined as

the interval between the start of the search and the first

look in the i location. It is assumed that the target will

not appear before the start of the search.

For a given search procedure, the expected delay between

the arrival and the discovery of the object is

(4)

ti E p ti + [ + 1i~ Jl• +kT (j+k ,

where J.. is the total number of looks in the ith location and.1

ai = l-qi is the probability of failing to detect the target.

The procedure is to choose positive quantities Tij that minimize

the expected delay subject to

J.

Tij T (i 1, 2, ''', n).
j=1
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Minimizing the expected delay subject to the above constraint

yields, treating Ji as fixed,

Ti 2 < J

T i, J.(l-cti)JA

under the assumption that. T is great enough so that a3l J.i

are large. The optimum expected delay is given by

N

t Pi ti + J .(5)i-i i

To determine the optimum Ji, (5) must be minimized subject

to j

N

E J t. T.

~..1

The results of this minimization are:

N

ti
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I
n n 2

In general, it is not possible to arrange a search pattern

that satisfies the above conditions for all locations,because

the condition that "looks" in different locations must not

overlap,has not been taken into account. Hence, one can

conclude only that a search pattern which approximately
satisfies the above condition is, at least, approximately

optimum. .

Blachman and Proschan (1959) consider the..'Yllowing

general search problem. Objects arrive in accordance with

a Poisson process, the rate of arrival being A. Having

arrived, an object appears (and remains until detected) in "

box i with probability pi' A single scan of box i costs

ci (possibly including the cost of false alarms), takes time

ti, and, if the object is presen-t in box i at the beginning

of the scan, will detect it with probability qi' The resultant

gain, gi(t), i = 1, 2, ''', n, is a non-increasing function of,

t, the delay between arrival and the beginning of the detecting

look. Considering only cyclic search scheduleF, i.e., search

schedules which repeat after D units of time, where D is arbi-

trary, the authors derive the optimum search procedure. The

expected net gain per unit of time from fi regularly spaced

looks per unit of time allocated to box i, i = ,2, 2 '', n,

is given by
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r APifiqi[ (1 - qi) gi(t-dt f iCi

nif i J :i

r ii

The problem is to maximize the expected net gain subject to

N
f l i. , fi ! 0, (U = 1, 2, "'', n).

The solution to the above problem is obtained as follows:

Define f() fQr r ) 0 as -

f f (r) 0 if .i(0) _< r

" (r), if 'r ( ) -> r .

Ifi(r) :fi suoh that ri(fi) r, otherwise,

where

ri(f ) = .
3.1t4(ai
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Also define

.:F(r) f E f(r)t i

1. r* min r,

[ (r > 0
!F(r) <1

and

fi* (r*).

I The major result of this paper is the following theorem:

Theorem:

f { .* (1 12 2, n) maximizes r amnong

I]

ii 1, 2, , n satifying

N

Sfit 1.

in the foregoing discussion, the optimal schedule was obtained

by ignoring conflicts among boxes, however, the authors show

that by taking n sufficiently large, and at the same time the

pit tit ci correspondingly small one cani always produce a

conflict-free schedule with the expected gain per unit of

time as close as desired to

t .l'



3O

rA r (fl*, ''', fn*),

Some additional results obtainpd in this paper include:

(a) In considering how best to schedule scans in any

one given box (ignoring all other boxes, for the

moment), the optimum schedule calls for scans

uniformly spaced in time.

(b) The following theorem provides a sufficient condi-

tion for answering the question: Under what circum-

stances should a given box be searched?

Theorem:

If J tdgi(t) - ®, then, f* > 0.

0

(c) By taking the gain function to be the negative of

the delay between arrival and detection, iie.,

g i (t ) - (t .+ t i) 1 , 2 , '' , n ,

the optimal frequency, fij, is shown to be proportional

to

p . . . . . . . . . . . .. . . . . . .



Matula (1964) derives conditions for the existence of an

ultimately periodic search program in the following context:

J An object is in one of a finite set I of possible locations,

with a priori probability Pit Pi = 1. Associated with

J each location i is a cost for searching that location, ci,

and an overlook probability, ai, if the object is in i and

i is searched, it is not detected. The problem is t6 find

V a program a = (o(l), a(2), ... ), i.e., a sequence of locations

io be searched such that the expected cost, v(a) of finding

the object is minimal. A program is called ultimately periodic

if u(j + 6) = c(j) for all j > T, where T denotes the length

of the transient phase and 0 the length of the period.

The major result of this paper is the conditions for

the existence of an ultimately periodic optimal program as

well as the minimal period and the minimal transient length.

It is to be noted that the general dynamic programming solution

gives an optimal program recursively, whereas the results of

this paper have the advantage of yielding a closed form expression

and require evaluation of only the first T + 0 terms. In addi-

tion, a periodic optimal program yields for the expected cost

a power series that is algebraically summable in closed form.

The results of the paper are summarized in the following

assertions:

Lemma Tf a is an ultimately periodic optimal program of

transient length T and period O=E ni where ni is the
i=T



number of searches of location i per period, then

ni n ,
(i for i, j C I.

Corollary A necessary condition for the existence

cf an ultimately periodic optimal program is that the

set of ratioslo a u')
lo i log(i,j) a

g j

consist only of rational numbers.

Theorem: For the search problem where the ratios

log lo

are rational numbers for (i,j) e I, there exists a program

a* such that

(a) a* is ultimately periodic of period 8 and transient

length T, where

m min 6'16' and el. (log ai)/ (log a,) are integers?

jnl

I qipi/a ic ii

J J J JJJI
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(c) e is the minimal possible period

S(d) T is the minimal transient length.

i Combining the previous results, Matula obtains:

Periodic Search Theorem:

of an ultimately periodic optimal program is that the ratios

log ai og aj (i,j) E:I

all be rational.

It is interesting to note that the limiting frequency of .

search of a location for any optimal program depends only

upon the overlook probabilities, not on the initial probability

distribution or even the relative costs. i

In the following example, due to Klein (1968), one can

note the more detailed structure of the transition mechanism.

Klein considers the following problem. An object moves about

within a finite number of regions, one per time unit, according

to known probabilistic laws. A single searcher, using a de-

tection system whose effectiveness is a function of the amount of

effort used and the region searched, checks one region at a

time until the object is found, his budget effort is exhausted,

or he decides that it is "uneconomical" to continue. The

problem is to find an optimal sequential search policy, i.e.,
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one which tells the searcher, at each point in time. whether

to search, where to search, and how much effort to use. It is

further assumed that the target's movements are independent of

its location and that the searcher is "noisy" enabling the

target to base his movements on knowledge of the searcher's

location at the end of each period. The following assumptions

ave also made:

(a) L + 1 regions are to be searched) 0, 1, .. , L.

(b) The searcher starts in region 0 (the base) and the

object is in any region. The budget, of size B,

consists of a finite number of discrete units.

The two classes of states and their associated labels are

defined as:

(1) ib0, region i has been searched, 0=4unsuccessfully,

and b units of the budget remain for further use.

(2) ibl, same as above, except lsuccessful search.bI

The state space of the decision process is given by

S {ia; i = 0, ---, L; b = 0, 1, -,B-l; a=0,l1 U 0B ,

where 0 is the initial state.

It is assumed that the target discovers the searcher's

location at the end of each period. His evasion strategy,

based on this information, is assumed to be randomized and

represented in the form of a stochastic matrix

StI



35

H I h..

where i denotes the searcher's current location and j the

target's next. Then, corresponding to each searcher position

(i), the target moves to position j with probability hjj.

Note that this implies that the target's ability to move is

independent of its location. This may not be true of the

searcher's mobility. The effectiveness of the searcher's

detection process depends upon the region searched and

the amount of effort used, i.e.,

vj(e) probability that a search of region j

using effort e will find a target if it

is in the region.

After each determination of the current state of the

decision process, say ia, the searcher chooses a decision,

from a finite set 'il), i.e., the searcher chooses the

next region to be examined (j) and the amount of effort to

be used (e = 1, 2, .'', b). It is assumed that the decision

is made with probability d(ibje). The process is controlled

by a randomized stationary decision rule (Derman (1962) has

shown that attention may be restricted to this class of rules):

D d(i', e d(i,, j _e) > 0.

d (i ,

I
b e
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The problem i,.A .,. A"-,.-,- __ r D . 'L• I

of all randomized stationary rules. Next, the stopping states

for the chain are defined as follows:

(a) let A equal the set of all states in which

the target is found

A {i; i 0, *o',L; b 0,1 *,B I

(b) let G equal the set of all states in which the budget

is exhausted,

G = li0 ; i Op 0,.. L 1
.0 .

then T AUG is the Qomplete set of stopping states for the
chain. It is also assumed that the process starts in state

B1 with probability 1. The transition probabilities for

the controlled chain, p(i.g, J.) follow:

Let r ij 1, 2, -', be the travel effort needed to go
from i to j; then, for all integers b,f: 0 < f = b-e-rij < b < B,

PUib, jl) hi1 v (e)d(ib, je), ib 0 S-T, E A,

PUb, if) = 1 - hiD vj(e) d(ib, j b 0 S-T, jf S-A.

p
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The chain, as defined, is absorbing by virtue of the stopping

di~Les T. i-c is made cycilc by forcing its return to the

starting state ( 0 B) whenever the set T is reachcd, i.e.,

P•a 00) d(i, 0) 1 for i• a T.b B b, B b

This new chain consists of, at most, one ergodic class of

states. The following cost structure is introduced: cai

denotes the cost if the system is in state ia, at the end of a

period and decision j is made; that is
e

cal, e + rij, iL e S-T

c(ib, e C , ib e T.

The total expected cost is given by

T (D) '

Q(D) E d C
T=O

where T(D) is the random number of periods taken by the process

to reach a stopping state using a specific rule D. Let

I(ib) :b E S represent the (unique) steady state proba-

bilities of the controlled chain (note that the r's will be

functiohs of the decision rule). The total expected cost can

be written in the form

pQ(D) [ FaB Tr] j2 dir(ji)~i) ,)
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0

where from Markov chain theory i/w(OB) is the mean recurrence

time for state 0 and

1 -1E(T(D)) A L -
B)

is expected duration of the searci'. A successful search termi"-

nates in class A, hence the probability of a successful search

using rule D is

Klein off ers the following objective functions for consideration:

(a) min Q(D)
(D}

S.T. P(D) > e

(b) max P(D)
{D)

(c) min E T t(D) }

f S;T. P(D) > G

Q(D) C,, r

(d) max P(D)

S.T. E(T(D) > A

Q(D) r

Formulation (b) may be solved using dynamic programming, the

other formulations can be transformed into linear programming

problems by utilizing the techniques described in Derman (1962).
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Pollock (1964) develops search strategies to minimize

the expected cost of search which are sequential in the sense

that a decision at any timtn is dependent upon what has been

observed up to that time. The search process is represented

in terms of a stochastic dynamic program including consideration

of false alarm probabilities. The optimal search strategies

as well as the associated minimum costs are given. The state

variable, the probability that the target is present, is ad-

justed by Bayes' rule after every observation. It is shown

that the optimal sequential strategy is similar to the Wald

sequential probability ratio test. The target is assumed

stationary, although if the target is not yet present in the

region of interest, it has probability X of arriving in each

successive time interval.

Kadane (1968) studies the problem of choosing a strategy

to maximize the probability of finding a stationary object

when a budget ceiling is imposed. It is assumed that the
probability of overlooking the object in the jth search of

box K, given that it is in box K and has not been found before

the jth search of box K, is a function, ajkO of j and k alone.

Therefore, the (unconditional) probability that the jth search

of box K is conducted and is successful is 0 if the strategy

thdoes not include a j search of box K, and is

Pk f 'j'k~l -k jck) Pk

j '< J
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where P is the probability that the object is hidden in

kkbox K. Let E jk be the event that the j th search of box K 1

is conducted and is successful and

Pjk = probability that the event Elkoccurs.
H I

Let a denote a search strategy, then the probability of

finding the object using a is PjkV P is to be included~ ~jk' jkistbencud
in the summation if there is a j th search of the Kth box in a.

The simplification and extension achieved in this paper are

a consequence of the possibility of restricting the discussion

to the unconditional probabilities of these mutually exclusive

events Ejk. It is possible to compute the conditional proba-

bility that the jth search of box K will be conducted and will

be successful, as,

P 
ik

A Prs
(rs)C 6

where 6 is the set of searches conducted up to this point.

Let the jth search of box K cost cjk. Then the largest

cost one can occur using strategy a is

Sjk

where cjk is included in the summation if there is a .th search

of box K in a. In short, a strategy is sought to

MAX P
a Pjk
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subject to

Cejk _< C,

with the usual remarks concerning the extent of -the summations.

The author extends the NeymanmPearson Lemma to ,neasures

of arbitrary total measuie. The theorem is stated as follows

( B = c over all positive P
jk , .

Theorem:

Let {Pi} and {ci} be arbitrary non-negative sequences

such that P. < =. Let X be the class of sequences xi,

such that 0 < xi < , Vi.. If 0 < C < B, then:thenma~jmumf . '! of

subject to

xici <C

and xi e X is attained, and it occurs when and only when

I if P. > ro.l I
x. 1 (6)

0 if P. < rc.
1 1

for some r, 0 < r < -, and

xici C.
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Thi t r. rat aaf.'yJ rg a~ L', 6th nt frtn- a ctuh up Umm~l

x and is a single point or a closed interval. The author

describes an integer programming algorithm (branch and bound

variety) adapted to the problem of finding the object subject

to a budget ceiling C when discreteness is insisted upon.

Th'e implications of the previous theory towards the problem

of minimzing the expPected cost are summarized in the following

results,

The author, defines.a set of searches to be locally

optimal if the inclusion of (j ',k') and exclusion of (j,k)

implies

.P

,. 0 jk, Ojk

The following theorem is given:

Theorem: Let Pik/cjk be non-increasing in j for each k. Any,

locally optimal feasible strategy including all

earches for which PJk 0 minimizes the expected

cost of all unsuccessful searches plus half the cost

of the last, successful search. ,Such a strategy

IFor ck l, k=l,2,0'',N, Chew (1967) gives basically the

following optimal strategy: To maximize the probability

of finding the target in a fixed number, N, ofsearch1es,

choose those N searches (J,k) for which Pk J,-I (l.Ck is
kak

largest.
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exists if and only if

(d) in all ooxes K for which Pjk 9 0 for all j

bk b = lira P.
i-4o Cjk

where b > 0.

(b) If b is positive and P jk/cjk b for some (j,k),

then for every sufficiently large j, Pj/Ck is

b or 0 in each box.

(c) Pjk/cjk > b for all (j,k) such that Pjk 9 0.

Black (1965) presents a graphical argument for the optimal

sequential search procedure for the following problem: A

stationary target is in one of n regions. It is in region i

with prior probability Pi, a look in region i costs ci, and

the target can be overlooked with probability Lit

Let

P(k) probability that the target is found on

or before kth look,

c(k) total cost of the first k looks, and c

the random total cost. Then the expectation

of c is

E(c) =2 (c(k)-c(k-l)) (l-P(k-1)) (7)

k=l
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which is obtained from

E(c)= lim c(k) (P(k) P(k-l)) + c(N)(l-P(N)).

X1(

Black then plots P(k) versus C(k) as in Figure 2.

P(2)_ [

P M_

o c(1) C(2) C(3)

Figure 2

Probability of Detection in K Looks

As shown in equation(7)the expected cost of a search using

this policy is equal to the shaded area. It is noted that

all policies with finite expected cost have the same triangles

in their probability-cost plot, with only their order changed.

The heights of the triangles are given by

Pi(l-ai) n-l

and the base by c1 . Clearly, the policy that places the

triangles in order of decreasing steepness is optimal, if

it is feasible.
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Consider all the numbers

n-iP i(l'ai) ai

C .

arranged in a two-dimensional array. Note that the

Sci
C,

are monotone decreasing in n.

It is observed that the application of Bayes rule shows

that the policy with minimum expected cost is identical with

that generated by the rule:

"Always look in the region for which the posterior

probability (given the failure of earlier looks) of

finding the object divided by the cost is maximum."

Since the logarithm is monotone increasing in its argument,

one can construct the optimal policy by arranging the numbers:

log [Pi(l'ai) + (n-1) log a[ ci

in decreasing order. Viewing these numbers as points along

a line, the points corresponding to any particular region

will be equally spaced. If log ai are commensurate, the

optimal policy is eventually periodic.
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Renyi (1965) considers the following search problem: let

SN be a finite set having n > 2 distinguishable elements.

Suppose one wishes to find an unknown point X of the set SN. A
It is further assumed that one cannot observe X directly;

however, one may choose some functions fl, f2 f "''' from

a given set F of functions defined on SN, and observe the

values fW(x), f 2 (x), .. ', fk(x). It is assumed that F contains

M functions, M < n. A strategy of search is a method for the

successive choice of f1, f2, ...' fk' which leads to the deter-

mination of X. The usual definitions of pure and mixed strategies

are applied to the choice of the function fl1 f2 -9 fk" The

author attains some general theorems concerning the duration of

a search using random search methods, and it is shown that, in

general, these random search methods are almost as good as the

best pure strategy, and are usually much simpler.

Miehle (1954) discusses numerical techniques for determining

the optimal distribution of effort under constraints. In par-

ticular, one has various types of effort to expend on corres-

ponding tasks applied towards a desired result. The effect is

represented by E(x , x 2 , -1, Xk). In particular, Miehle studies

the case in which the effects are additive, i.e.,

E(x 1 x 2 l *..' xk) f 1 (xl) + f 2 (x 2 ) + .'.+ f n(Xn)

The objective is, of course,

Max E(xl, s2, ... xk)

S.T. xi < C,

xi > 0. a-]
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array, the columns of which represent the efforts aI ''., xk

and the rows the allowable allocation to each effort type

ranging from 0 to C, for the maximum value of E(X1 , x 2 , ... , Xk

Staroverov (1963) considers the following search problem.

A point is located in the kth cell with probability Pk' j Pk = 1.

One cell is inspected per unit of time; if the point lies in the

cel2 being inspected, it is discovered with probability q > 0.

The results of such investigations are considered independent.

Let a t denote the number of the cell being investigated at time

t, if the point was not discovered up to the time t-l. Let

a = (•' -' at,... ) denote the search strategy and T, the

time required for discovering the point. In this paper, a

procedure of searching, ah, is determined so that

E(Ta*) =inf E(T.).

Arkin (1964a) extends the results of Staroverov and

considers simultaneous search of a number of cells. Explicit

formulae are given for the opti.mal strategy of search and for

the corresponding distribution and mean value of its duration.

In another paper, Arkin (1964b) considers the problem of

obtaining uniformly optimal strategies in the context of the

stationary search problem. The a priori distribution of a

particle inIRn is given by the density function f(x). The

search strategy is defined by the function
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0!

a a(x,t), > 0 ,

f r (x,t)dx 1.

Let P (T) denote the probability of finding the particle using

strategy a during time T. A strategy a* is uniformly optimal

if

P *(T) sup P (T) for any T > 0.a a
a

In a very general case, the author proves the existence of

the strategy a* and is able to find its explicit form.

Chew (1967) considers the following variation on the

stationary search problem. Let the a priori distribution

of the object's location be denoted by (Pk1' k = 1, 2, ... , n,

where

~ < 1.
k

Since in this cuse the search has a positive probability of

never terminating, one must couple a stopping rule S with any

search procedure a. A loss function is defined by imposing a

penalty cost (c > 0) on the searcher for stopping before the

object is found. A procedure (a,. S) which minimizes the

expected cost to the searcher (i.e. which yieldi Bayes' risk)

is derived.
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MacQueen and Miller (1960) deal with the problem of

whether or not a search activity should be started and, if

started, whether or not it should be continued. Their model

gives rise to a general functional equation for which existence

and uniqueness conditions are given.

Gluss (1961) considers a model in which there are N neigh-

boring cells in one of which there is an object that it is

required to find. The a priori probabilities of the object

being in cells 1, of' p N are P1, ---, P N respectively, and

the costs of examination of these cells are Cl *..., c . The

search policy is considered to be optimal when the statistical

expectation of the total cost of search is minimized. It is

assumed that costs comprise a travel cost dependent upon the

distance from the last cell examined, in addition to a fixed

examination cost. It is assumed initially that the searcher

is next to cell 1, ci = i + c, where c is constant, and from

then onwards (assuming that the jth cell has just been examined)

ci = li-jl + c. An optimal search strategy is found in the case

where the Pi's are all equal, and an approximately optimal search

strategy is found in the case where Pi is proportional to i.

The latter case has application to defense situations where

complete searches occur at successive intervals of time, and

hence the enemy objects are thinned out the nearer they come

, to the defense base.



so1
Pcllcck (1'g) iuuide. d target moving in a Markovian

fashion between two regions. The objectivA funtions for the

standard problems of the minimization of the expected time

until detection and maximization of the probability of de-

tection under a constraint on search effort are derived. For

certain special forms of the transition matrix, decision rules

are derived for The minimum expected time problem. Upper

and lower bounds are also derived for the minimum expected

time problem.

p
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3.0 TWO-SIDED SEARCH

Neuts (1963) develops, among other things, stationary

minimax strategies foz, a multistage search game. A stationary

strategy for the hunter is an n-tuple

y (Y11 '" Yn)

' Yi > 0, • Yi = 1,

which denotes a probability distribution, chosen once and

for all, and by which the region to be examined at each stage

is selected. A mixed strategy for the stationary target is

an n-tuple x=(x 1 , .. , xn), with xi> 0; (i 1 1, 2, '',n)
n

and _1 x. z 1. xi denotes the probability of the target being

in the ith box. If the searcher uses the stationary strategy

y and the target the mixed strategy x, then the expected return

to the target at each stage of the game is given by

n

A(x,y) : Yk (ck'aqkxk)0

k=l
where,

C. = cost to the searcher for a look in region i

qi = probability of finding 'the target given the
correct region is searched

a = reward to searcher for detecting the target.
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T11 VI'vbdbiiity pVx,y) that the object will be found during

a given search equals:

np(x,y) -T qkXk~Yk.

The discounted expected return to the target during the entire
search is given by A

F(x,y) 6r [l -p(xy))r A(x,y)

r=O

A(x)y)
l-6[l-p(x$y) ]i

Denoting by xO (Ox..., 0o), yO (yl "0  ' yn0 ) and V
respectively a pair of minimax strategies and the value of
the game with payoff F(x,y), one must have

F(xo,Y) > V for all y,

F(x,Y) < V6 for all x.

Neuts obtains as the solution to the above formulation:

(1- j +(V -) 1

x j [] -- j + il, 2, ,ri
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YiC = i i = 1, 2, '' ,n.

k=1l

Note the independence of yO (searcher's strategy) of all

parameters except the detection probabilities qk'

The same remark holds for the expected duration of the

game, i.e.,

k l-p(xO,yO) ,
k=l

( = qk. ,...,'

It should be noted that stationary minimax strategies correspond

to the following cases:

(a) a memoryless searcher

(b) the tar'get is allowed to move after

each region is searched.

Let xc (xl,. , xn) denote an arbitrary mixed strategy for

the target. Suppose one is interesteýd in determining the op.timum

sequential response for the searcher against x and for the mini-

mum expected loss. Bellman's principal of optimality implies

that the following functiona] equation must be satisfied

f 6(X) = rmil ci - a qixi + S(l-qixi)f6C(rix)
i< i <n I
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with

ci 0 , qj 10 0 < 6-< 3, a > 0 and

defined by

iqi

r -x

The in a the a posteriori dsPtributioh dezrived from c,

given that ones unsuccesiful seardh of box i was maded For

CIr < 1, Beilman (195) settles the queptiohs of existence,

",,,Uniquenss, bad Qontiuty of the ,solution of the above func-

tiohal equation. Neut6 obtains the following rbuults on this

"equation for 6• 1. Let fn 2 Wx) bo defined by

Cl. "C a q x i fx )

1<1< n

Theorem:

The sequence f n(X). n 0, 1, "', for 6 u I is monotone

decreasing in n for. all x e X. A sufficient condition

for this to be true for all x and 0 < 6 < . is that
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S< a.
k=1 qk -

Theorem:

There exists a bounded concave solution f(x) to the

functional equation for 8 .l.

Charnes and Schroder (1967) develop models and methods

to find optimal tactics in an idealization of antisubmarine

warfare, viewed as a game of pursuit between the hunter-killer

force and a possible submarine. The status of the pursuit at

every move t(t = 1, 2, -"-) is taken to be one of a finite

number of possible states. A state summarizes the tactical

information available to both players for decision making.

A finite collection of tactical plans (decisions) is associated

with each state. When the players move they each choose a plan

and thereby jointly determine an intermediate payoff from the

hunted to the hunter and a transition probability distribution

over the states. The objective is to find an optimal strategy

for each player. A strategy is a decision (possibly randomized)

for each state and move, an optimal strategy is one of a minimax

pair for the total expected payoff. These concepts are presented

in terms of a terminating s:ochastic game (TSG) which may be de-

fined as a game played in a sequence of moves. At each move, thepI



game is said to be in one of a finite number of states

i 2,I, -, n. If the game is in state i Hi = 1, 2 , n)

and the hunter chooses alternative K, while the hunted chooses

alternative L, then the payoff from hunted to hunter is a. KL

(K = 1, 2, - , Mi; L = 1, 2, .. ', Ni).

The choice of alternatives K and L also determines the

transition probabilities:

P KL > 0 (i,j) 1 , 2,' ' n

K 1, 2, , Mi

L 1, 2, ''', N.

(M) KL < 1, all K, L, i

(i) KLI < M, all K, L, i.

Under the above assumptions, the game terminates with probability

1 and the accumulated payoffs received by either player are

bounded. A behavior strategy for either player is an n-tuple

of probability distributions x =(x 1  , x() where x.
1 xiMi(xi , '', x ).

If the hunter uses a behavior strategy, he chooLes the
mixed strategy xi whenever the game is in state i regardless of

what move it is or the manner of arrival at state i. By choosing
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a starting !7tatu i we obtain an infinite (th- number of moves

may not be bounded) game Gi(i = 1, 2, -, n). A terminating

_________u g ine definea as a collection G = (GI, .' * GN).

Let wi denote the value of G., the minimax f 4ts total + xp=ct-1

payoffs. The value of f may he defined tc be the vector

(w, , w ). Consider a two-person zero-sum game with

payoff matrix AC(a) where At(a), i 1, '', n is the Mi x Ni

matrix whose K-Lth element is
n

a KL + Pij KL tj,

j-l

and a = 019-50,en) is an n-vector of real numbers.

Let VAL(B) denote the minimax value of the two-person

zero-sum game with payoff matrix B and let X(B) and Y(B) denote

the sets of optimal mixed strategies for the respective players.

The following theorems characterize the optimal solutions to

the terminating stochastic game.

Theorem 1:

The value of the terminating stochastic game G is the
A

unique solution w of the nonlinear system of equations

wi=VAL [Ai(w)] i = 1, 2, .. , n.

Theorem 2:

The behavior strategies x, y where x xi [A.i()],

9 c yi[Ai(w)] (i=1,2,''', n) are optimal for the first
and second players, respectively, in every game Gi belong

to G.
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Charnes and Schroder then show that the nonlinear

problem can De replaced by a sequence of linear programming

problems. Stopping criteria are developed which insure the

desired approximation to w. The preceding results are then

applied to a problem in antisubmarine warfare. It is shown

that the objective function of the minimization of the expected

duration of the search can be expressed in terms of a terminating

stochastic game. In the event the hunter knows or is willing

to assume certain behavior on the part of the submarine, the

game becomes & one-person game. In this case, the determination

of the hunters optimal strategy is reduced to solving a dis-

counted Markovian decision process of the type studied by

Howard (1960). Finally, the authors study a finite terminating

stochastic game which terminates in n moves or a terminal state,

whichever occurs first. It is shown that in this case the

optimal strategies depend upon the move and are not behavior

strategies.

Norris (1962) considers the two-sided extension of a

one-sided search problem. The search is conducted against

a conscious evader who is able to observe the searcher's

actions and capitalize on any errors he makes. The evasion

device of moving between looks is treated. The game is zeroz

sum and incorporates a fairly general reward structure which

can include discounting. The reward coefficients associated

with this structure, as well as the location of the boxes and



their detcction vrobabiliti--, arc Lu both players.

Good strategies are developed for the players when tbe ffamc

involves two boxes. In the case of an infinite moving coEt,

designated by Goo, exact solutions may be obtained when the

escape probabilities, a 1 and a 21 (the rrjiiplements of the

detection probabilities) satisfy the relationship

CL 1 2

for a pair of intergers n arid n This relationship is the
1 2'

necessary condition for an ultimately periodic optimal program

derived by Matula (1964).

in the case of a finite moving cost, designated by G,

the evaders position (2 Box Case) as the search progresses

is described by a probability vector. If the probability

that he is in one box becomes sufficiently high, he should

move from this box with a certain probability. This causes

the probability vector describing his position to be trans-

formed to the nearest boundary of the no-move region. The

searcher's good strategy can be generated by a finite Markov

process. In some states of the process the next look is made

deterministically. In others called mixed states, the next

look is made according to a probability distribution. As

moving costs increase, deterministic looks are made more

frequently, and the situations in which a move is admissable

occur less frequently. In the case of infinite (prohibitive)

moving costs, the searcher makes a random selection from two



infinite sedrcn sequences. Once this choice has been made,

the search process is completely deterministic.

Tn t'h NdfbX forlation of e '-i cost game,

the good search strategy cannot be generated by a finite

Markov process. A limited memory approach to finding an

approximation to the good search strategy is suggested for

future research. Tn the game designated GO, no such cost is

incurred by the evader when he moves. As a result, the searcher

cannot gain any inference concerning the evader's position

from his past sequence of unsuccessful looks, and each look

should be made according to the same probability distribution

(this is the stationary minimax case disr.i!-ed by Nc ..t.s (1963)).

When the N-box form of GO was considered, it is noted that the

good search strategy may be useful when the evader arrives

sometime after the start of the game or leaves. Finally, it

is noted that the results for the N-box case in which the

position of evader is specified by a probability vector known

to the searcher may be useful in studying some one-sided search

problems.

Johnson (1964) considers the following search problem:

Blue chooses a region i (i ='I, 2, -, n) in which to hide.

Red selects one of n regions to search; if unsuccessful, he

is told whether he is too high or too low, and repeats until

he determines the correct region. Detection occurs with

probability one, given the selection of the region chosen by Blue.
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Although such a scenario ir ,,•e4 . in " IMlitaiy uuiLext, I
it may be quite the opposite in an information retrieval

context. Theorems concerning the necessary conditions for

optimality are presented Optimal strategies are obtained

(trial and error) for n < 11. For larger problems one has

recourse to linear programming techniques on a digital computer.

If {P.} (j = 1, 2, -', n) is a vector containing the proba-

thbilities with which Blue selects the j region, then it is

shown that P1 > P2 Let S {Sij denote the i strategy

for Red, i.e., Sij equals the number of look when region J is

searched under strategy i. The following theorems pertain to

Red's optimal strategies.

Theorem:

Assume at given stage that Red, playing Si, has located

Blue within the region k < j < M, and that Si calls for

the next look at a, left of Blue's frequency distribution

on this I2iLwI-val, and if a is too small, next playing at

b to the right of a. Then a necessary condition for the

optimality of Si against {P} is that

P.> P..

k <



At each stage Red should make his guess inside the

middle third of Blue's probability distribution

on the current interval of uncertainty.

Giammo (1963) considers the following problem: Consider

two opposing mobile battle forces that are able to change

position only at fixed time intervals, not necessarily equal.

Each force knows the area in which the other is operating

and is assumed to be efficiently searching this area for the

enemy's position. Labeling the forces Blue and Rod, Giammo

defines R to be the total area of Blue's operating region

and assumes that Red can seaich a region of area r dt in a

time interval dt, where r is some constant. B and b are

defined in a similar fashion with reference to Red's operating

region and Blue's rate of search. It is assimed that the

Blue force moves periodically every AM time units with!the

first move occurring at random with a uniform probability

density in the time interval 0 < t < t . Each move is con-

sidered to be instantaneous and to terminate with equally

likely probability at any point in its own operating region.

It should be noted that each time Red (Blue) moves, a new

stage of the searuh starts which is independent of the pre-

ceding stages.
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The objective of this paper, is to develop expressions

for' the probability that Red will Ietect Blue without Blue's

naving previously detected Red, P and the probability
r )'b n h rbblt

that M~ile will (ieter-t Red wit'hout Rccd's havir~g 1,it:viuusly

detected Blue, Pb-r

Define:

Pb(t) the probability that Blue has discovered

Red before time t,

P (t) the probability that Red has discovered

Blue before time t.

In these definitions, it is assumed that the searchers are

independent, i.e., that the discovery of Red by Blue does

not interfere with continuation of Red's search and visa-versa.

Given that Pb(t) and Pr(t) represent the integrals of corre-

sponding probability density functions, one can write;

Pb(T) Pb(t)dt,

Pr(T) f Pr(t)dt.
0

Certainly, one can obtain the probability that Blue will dis-

cover Red before time T without Red's having discovered Blue as

T

P b,r (-r) f [i - Pr(t)] Pb(t)dt,
0
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and lor Red

T

P r,b (T) = I-1 Pb (t)] pr(0~dt'

C''

The desired parameters are: _4
Prb = r,b(• '.

and

Pb,r P b,r(-)"

Integration by parts yields

P r,b P / r(t) Pb tMdt,

0

and

P b,r f P Pb(t) P r(t)dt.

0

Giammo then derives exact as well as ipproximate expressions

for Pr~b and Pb~r under the above assumptions concerning the

motion and search structure of the problem.

Koopman (1963) presents some of his original work (Koopman,

1957) in terms of a zero-sum game. He considers the problem

of detecting an enemy unit located at a point x in some region

R with a limited amount of search effort P. One is interested

in determining a distribution of random search intensity 4,(x),
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with the provision that

f O(x)d , ON(x) > 0.
R

According to the law of random search (Koopman (1957)), the

probability of detecting the target at x is

1 - e -4(x),

and therefore the probability of detecting the target when

its probability of being at x has density p(x) is

P fp(x) El - e-4(x)] dx.

R

If the searcher assumes that his distribution of effort O(x)

is known to the target, and the target can then choose his

position (or position density p(x)) to minimize the probability

of detection P, then the searcher can select O(x) to achieve

maximum P. Conversely, the target may not know O(x) and may

assume that the searcher knows p(x) and selects O(x) to maximize

P. In both cases, for O(x) V/R, one has

maximum P minimaxP 1 - e



In the heterogeneous case in which the "visibility", g(x),

dc;CnI upon Posit on, thei ,.uilb-llilLy of detection becomes

p - e-g(x)o ;

R

and the constraint on search effort is weighted by position,

i.e.,

f h(x) *(x)dx = 4, h(x) *(x) > 0.

R

Koopman obtains the following result for this case: The target's

strategy p(x) is given by p(x) = a h(x)/g(x), and the search

density function (x) = b/g(x). The-constants a and b in the ilk

above expressions are determined from

1 h(x) 1 i,h=x) dx, and
a g =9X)F -

R

The value of the game is still 1 - e

The case of a moving target is also considered. The

target has to move along a path C from a point x0 on a given

curve K to a point xI on the given curve K1 , C passing •hrough

a field R (bounded by the given curves) in which the search is

being conducted. The searcher can choose any O(x) subject to

IO(x) dx = , *(x) > 0;



67

and the target can'select his curve C, which he follows at

a constant speed. It is shown that the expression for the

probability of detection is given by

P =P (c, 0) =1 - exp [ - J(x)g(x)ds]
c

where ds is the arc length, and the integration denotes a

line integral along the path C. Since P(c, *) increases or

decreases with f (x)g(x'ds, the problem of minimax can be

stated in terms of this line integral.

Beltrami (1961) studies a random patrol on a straight

line and gives a rigorous mathematical discussion leading

to the paradox that the requirement of uniform coverage in

a random patrol where the searcher has fixed speed imposes

the condition of a non-random back and forth patrol. The

following scenario is considered: A search craft S patrols

a linear barrier in some back and forth manner. Using de-

tection gear it has an effective search radius p (definite

range law) which is assumed small in comparison with tne

barrier length. The penetrator P, approaches to within some

distance of the barrier and appraises the patrol pattern of S.

If the patrol is regular, then an intelligent tactic on the

part of P is to coincide its barrier crossing with the moment

in which S will be moving away or is at the extreme distance

from the cross-over point. A random patrol for S is chosen in
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order to completely eliminate any advantage tO P; it being

essential that the probability that a given point is covered

in a move by S is as nearly constant as possible. It is

shown that this policy will assure that the maximum penetra-

tion threat of P is minimized.

Dresher (1961) considers two formulations of a recon-

naissance problem. In the first model,.it is assumed that the

attacker and defender have twostrategies each. Blue, the

attacker, wishes to seize a defended enemy position. It is

assumed that he has two courses of action:

(a) Attack with the entire force,

(b) attack with part of his force, leaving the remainder

as reserves and a rear guard.

Let the payoff matrix A be given by

a11  a 1 2
A=

a 2 1  a 2 2

where, for example, a2 1 represents the value to Blue if he

attacks with part of his force and Red defends with hit entire

force.

It is further assumed that the attacker can send out a

detachment to reconnoiter in an attempt to discover the plans

of the defender. In order to defend himself against such

possible action, the defender may take counter measures. The

new game now has 16 strategies for the attacker and 4 for the
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defender. The matrix for the new game can however, by testing

for dominance, be reduced to a 4 x 4 matrix. A particular

reconnaissance game is solved by way of illustration.

Dresher's second example deals with the value of recon-

naissance information in the context of a bombing attack. It

is assumed that there is an uncertainty concerning the worth

of a target. Such uncertainty may arise from unknown or

partially known results of earlier strikes on the same target.

If the exact worth of the target is discovered through re-

connaissance, then it is possible to dispatch the most efficient

size attacking force against it. In order for a reconnaissance

to be successful, at least one reconnaissance aircraft must fly

to the target and return. The following notation is introduced:

B = Military worth of one bomber.

R = Military worth of one reconnaissance aircraft.

T = Military worth of the target.

0(t) = Probability that the value of the target does not

exceed t; This probability distribution is known

prior to reconnaissance.

r = Number of reconnaissance aircraft sent out prior

to the mission.

b =Number of bombers dispatched to the target during

the mission.

p =One-way survival probability of bomber and recon-

naissance aircraft between base and target.
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aT Probable worth of the target after being hit by
one bomber.

a'T Probable worth of the target after being hit by

two bombers.

The object of the attacker is to maximize the net outcome of

the mission, the difference between the target damage and

the aircraft losses.

The payoff, depending upon r and b, is given by

M(r,b) -t=pb . 2 Bb =- R do(t).

The optimal solutions are given by -p

1 + - in AP
p "

and

lliIf reconnaissance

-plnca reports T.

b*'

,in If reconnaissance

-pin a does not report.

where

P 1n- 1(l p 2)

2D Uat )• B

pln a

01 = ft do(t),

A = D fir, !-o• )
t
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For these optimal values the payoff is given by

M(r*,b*) 1 - D - Dln D + LAP - (1-P2)RJ - (1-p )Rr*.P

Issacs (1965) discusses extensions of his theory of

differential games to games with incomplete information,

e.g., search games. It is shown that when the hidden objects

are numerous and immobile, the time to find them (payoff

function) is nearly independent of the searcher's strategy

as long as no effort is wasted re-searching territory already

scouted and the overlook probability is zero. In the case

of search games with mobile hiders, Isaacs conjectures that
I ' the details of ,. randomization are unimportant, but certain

basic parameters, such as the hider's speed, are not. He

argues that in either case there appear to be strong grounds

for an approximate theory.

II
4-

I
I
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4.0 MISCELLANEOUS TOPICS

problem. A region of the ocean is to be kept under sur-

veillance to determine the probable number of enemy sub-

marines in the region and their locations. It is desired

to estimate additional measures of effectiveness of the

surveillance operation, such as the expected fraction of

submarines in the region being tracked at a given time.

He is alzo interested in determining how the above measures

depend upon the capabilities of the various components of

the detection and tracking forces. The following assump-

tions are made:

(a) Submarines enter the region at a known rate. It is 4
also assumed that their time on station is a random

variable with known distribution.

(b) Two modes of detection are considered:

(1) Detection at barrier line, the detection process
described by a single probability of detection,

(2) Area search detection, the detection capabilities

are described by two search rates, one applies to

submarines not previously detected, the other to

previously detected submarines.
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be broken and reacquisition occur, both events are

described by their respective rates. It is also

assumed that a contact is passed from a detection

unit to track unit with probability one in zero time

units.

In order to characterize the surveillance system, Dobbie

describes the following state space:

1. Submarine is being tracked,

2. Submarine not being tracked, contact has been lost,

3. Submarine not detected.

Using renewal-type arguments, Dobbie derives expressions

for

(a) The expected number of submarines in the ih state
at time t, the, expected number of submarines in

the region at t,

(b) The probability that a submarine in the region is

in state i at time t.

The author then relaxes the assumption that.contacts are

passed from detection units to tracking units in zero time

with probability one. In addition, the following assumptions

are also made:

p
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(a) Given detection by a barrier unit or by an area

sensor, the detecting unit will attempt to main-
-itain contact until a tracking unit arrives in the

vicin~ity. !

(b) Targets can be reacquired either by area search

or by special search. If contact is regained by

special search, it is assumed that tracking will

be accomplished by the detecting unit until trans-
fer is made to a similar unit and during this time,

the rate of losing contact is X.

In this case the expanded state space includes:

(1) Targets (submarines) tracked by a mobile unit in
the vicinity of the target;

(2) Target previously tracked, contact recently lost,

local s.earch being made to regain tracking contacts

(3) Target previously tracked, new detection recently
made by area search, tracking units enroute to

area or searching in an effort to obtain tracking

contact;

(4) Target previously tracked, search to regain contact

discontinued, no new detection;

(5) Target not previously tracked, recently detected by
area search, tracking units enroute;

(6) Target detected by the barrier as it enters the
region, tracking units enroute or searching to ob-
tain tracking contact.

(7) Target not previously tracked and no previous de-
tection.
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As before, Dobbie develops expressions for the probability

that a submarine is in state i at time t. aiv~n tht it

was in state 6 or 7 at time t = 0 and stays in the region

during (0,t); i = 1, 2, ... , 7.

Koopman (1946) developed the fundamental theory of

target detection for two limited cases. In the one case,

the detection equipment is assu-ned to sweep or scan at

regular intervals, with the "glimpses" of the target long

enough apart so that the probability of detection on one

glimpse is independent of the probability on the preceding

glimpses. In the other case the detector is assumed to be

continuous in its action, and it is assumed that there is

a probability ydt of detecting the target in any interval
of time dt. Kimball (1963) observes that actual equipment

in use has detection properties which lie between these

limits. He shows that, in spite of this, actual detection

equipment can be considered as equivalent to a certain

continuously operating detector whose properties are deriv-

able from those of the actual equipment. In addition, he

also considers the problem of holding the target. Assuming

the detection process to be a one-step Markov process,

Kimball notes that it can be described by the matrix
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g0 0  g0 1)

where. e.g., 900 is the probability that thea.- lb no de-

tection on a given scan if there was no detection on the

previous scan. New parameters r and g are defined as

r 9g01 + gl"

g01g - -gol + g10

where g is the unconditional probability of detection on

an arbitrary trial and r is a measure of the lack of cor-

relation between trials. It is shown that if the scanning

frequency is f, the frequency of transitions in either

direction (from the detected to the undetected.orvvisa versa)

is

W = frg(l -

Kimball defines two detectors as equivalent if their g and

w parameters are the same. In particular, any detector is

in this sense equivalent to a continuous detector with the

following properties. If the detector is in the "undetecting"

state, the probability that it begins to detect in any iin-

terval, dt, is ydt, and if the detector is in the "detecting"

p
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state, it has a probability of becoming "undetected" equal

to adt. The proper values of 8 and y are

w

Kimball forms the following model of tracking: The entire

system, detector plus operator, can be in any one of four

states:

(1) Detector off, target not tracked;

(2) Detector on, target not tracked;

(3) Detector on, target tracked;

(4) Detector off, target tracked.

it is assumed that ths behavior of the detector and the

operator can be modeled in a continous fashion. Let

Adt probability of a transition in dt from state
2 to state 3, and

Pdt z probability of a transition in dt from state 4

to state 1.

The state diagram is given by

p!
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1 2 Target Not
Tracked LI

3 Target Tracked

Detector Detector
Off On

The steady state probabilities of being in the four states

are derived in terms of y, 0, V, and X, as well as the

frequencies with which both the tracking and detection phases

start and stop. 4
The problem of the target visibility changing over time

has been formulated by Bonder (1969) and Disney (1969).

Bonder considered the situation in which the target and the

searcher (detector) may not be continuously visible during ' j
the period of time in which the searcher is examining the

subregion containing the target. The searcher has a de-

tection capability only when the target is visible. The

author considered the following situations:

(a) The target may be visible to the searchers for
the entire search interval with some known
probability p,

(b) The target may be visible at the start of the
search period, the length of the visible period
being a random variable with known probability

density function, and not reappear,

L

It
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(c) A single period of visibility may be exhibited 4I starting at some random time during the search
interval and lasting a random amount of time.

In each of these cases, the probability density func-

f tions for the time until the first detection, the time spent

searching the area until a fixed number of detections occur,

V and the time spent searching the total area are derived.

Disney characterized the Visibility process in which

the target alternates between visible and invisible states

as an alternating renewal process. The transition matrix

for this process is

( f 2 (t) f(t)

where fl(t) is the probability density function for the

time in the visible state and f 2 (t) the probability density

function for the time in the invisible state.

Employing some renewal theory arguments, the author

obtained, among other things,

(a) 7r1(t), the density function for the probability

that the target is visible at time t,

(b) for a fixed time interval of length Td' the dis-

tribution of
(1) the number of times the target is visible,

(2) the total time of visibility.
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Analysis of interactions between the visibility and

detection processes represents an important ext.n ±n" of

the scope of knowledge in search theory related to the IIs
results concerning the stationary target. Physically,

the structure of their interactions can be considered as

a model in which the search environment acts to aid the

target, e.g., the terrain, folliage, etc., common to the

subregion in which the target is operating, or, in the

ASW context, the existence of termal barriers, and other

local phenomena which tend to increase (and decrease) the. H
level of concealment of the target QVSW Fime. Iithe

situation in which a single interval of visibilify exists,

the probability distribution of the length of the visible .

period may be interpreted as the time required for the

hunted to become aware of the hunter's presence, Multiple I

periods of visibility may reflect the situation in which
S, II

the enemy periodically activates some form of sensing equip-

ment which makes him vulnerable to detection by the searcher.

Danskin (1962a) makes a study of the optimum distri-

bution of aerial reconnaissance effort against land targets

in the presence of decoys. The model considered is one in

which the reconnoitering forceS allocate effrt'amonhn

various regions, their objective being the location of the

targets, assuming the side being reconnoitered is passive.

II



iThe information function of communication theory is chosen

as the measure of effectiveness. That is, the information

SI of a reconnaissance is defined to be the change in the

uncerLainty of the region resulting from that reconnaissance.

For each of the (K0 ) regions, one has an information function

IK(), where x is the level of reconnaissance. The alloca-

I. :tion problem is stated as: Given X units of reconnaissance

[ effort to distribute among the K0 regions, how shall this be

done so as to maximize the information?

One wishes to maximize

IK(XK

subject to

SXK X, XK 0
S~~K:l -

The solution to the problem depends entirely on the form

of the functions IK(x). Under the most realistic assumptions

concerning the detection probabilities associated with aerial

reconnaissance, the author is unable to determine the behavior

I of the second derivative of IK(x) and thus the form of the

objective function. In Part II of the two-part paper,

lDanskin (1962b) considers the two-sided reconnaissance
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problem, in which the side being reconnoitered seeks to

minimize tha 4rifrormaon (maxiiz. I.A Iunfusion) obtained 1
by the reconnoiterer, while maintaining at least a certain

minimum acceptable threat with a fixed budget. This problem Ii
formulated as a zero-sum, two-person game, is solved for

a special-case (fixed equipment) and it is shown that there

exists a solution in mixed strategies for the general use.

Smallwood (1965) considers a model for the placement

of n detection stations for optimum coverage of an arbitrary

area. The stations are assumed to be identical and to jJ
have a probability of detection that is a function only of

the distance between the station and the event to be detected. i
Furthermore-, stations are assumed to operate. independently"

of each other, It is also assumed that the enemy has

complete knowledge of the station locations and £ffedtivteess

and is interested .only in eluding detection by the detection

stations. The situation.is reduced to the miniman problem.

of placing the stations so that the maximum probability of

not detecting an enemy event is minimized. Necessary con-

ditions for the optimal locations are given, and a hill

climbing interative technique based on these conditions is

described in some detail, The technique is applied to the

problem of the location of detection stations within the
United States and the Soviet Union.

p '1

II
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I
Pollock (1969) points out that there has been a

-.d4cncy to modal ti, L•z-cc phases of a general surveillance

operation (search, detection, and ensuing action) separately,

the output parameters of one such model are often used as

the inputs to another. He considers some of the interfaces

between these phases and presents some examples of the

relation between search, detection, and decision theories

involving false alarms, continuous surveillance, localization,

and the selection of appropriate measures of effectiveness.

W. Edwards (1962) notes that the development of a

dynamic decision theory will be central to the expansion of

research on human decision problems. A taxonomy of decision

prob~ims is presented, most require a. dynamic theory in

which the decision-maker is assumed to make a sequence of

decisions, basing decision n + I on what he learned from

decision n and its consequences. The relevance of the

mathematical developments in dynamic programming and Bayesian

statistics to dynamic decision theory is examined.

Along these lines,'Rapoport (1966) considers a dynamic

programming model of a controller, i.e., a dynamic decision-

maker, who can actively manipulate the environment by his

decisions. An experiment is described in which subjects

were given dynamic decision-making tasks, the results fit

F
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well the analytic solution obtained from the dynamic

programming model.

Smallwood (1966) notes that in many practical situ-

ations the discount factor for future rewards and costs

is not known precisely. The dependence of the optimum

policy on the discount factor is often noted in the model-

ing of these problems. He discusses the dependen-e of the

optimum policy on the discount factor for the class of

finite-state, time-invariant, Markov models. A procedure

is developed for finding the value of the discount factor

for which the decision-miker is indifferent between two

policies. The procedure is extended zo a discussion of how I

one can find the complete description of the optimum policy

regions over any range of the discount factor.,Hj

I4Iii

' I

Ii?

II
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5.0 AREAS FOR FUTURE RESEARCH

Table 1 is an attempt at summarizing the current

"sLate uf Lhe arLL" in search and reconnetaisance theory

(at least in subjects relevant to the goals of this report).

The numbered entries refer to the papers in the bibliography

given in Chapter 6.0. No attempt was made to enumerate

a4Z the papers in a given category, but only to indicate

that the area had been treated in the literature.

Examination of Table 1 clearly reveals areas in

which little or no research activity has been devoted and

which are considered important'topics for future research.

These are briefly noted below along with some areas suggested

by Pollock (1969) and Dobbie (1963).

2. Interuaoton Between Deteation and ViaibZity.P-'ooese.e

The table suggests that the visibility problem as

defined by Bonder (1969) and Disney (1969) has not been

treated. As noted in the text, the visibility process has

been modeled as follows:

(a) The target may be visible to the searcher for

the entire search interval with some known

probability p.

(b) The target may be visible at the start of the
search period, the length of the visible period
being a random variable with known probability

density function, and not reappear.
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(c) A single period of visibility may be exhibited

starting at some random time during the *Aarnh
interval and lasting a random amount of time.

(d) The target may exhibit alternating periods of
visibility and invisibility, the durations of each

U being random variables.

JThese forms may interact with all modes of detection and

targets, thus giving rise to many research possibilities.

J This area is currently being studied extensively in thb SRL

under this ONR contract.

2. Non-Stationary Targete

(a) Target motion independent of position and known

precisely.

(b) Target motion independent of, posit-ion and drawn

at random from a population known to the searcher.

(c) Target motion dependent upon position and known

I .. precis~ly to the searcher.I.+

(d) Target motion drawn randomly ftoni a known popula-

tion which is a function of tareet position.

(e) Target motion chosen in advance by the evader from

K I a probability distribution known to the searcher.

(f) Evader chooses motions, subject to limitations

known partially to the searcher, throughout the

search as he obtains information on the past activ-
ities and location of searcher.
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3. Struotu•$ and Capabilities of Operational Detectors

Athougl ~LLJU o LAUUc&.44LL$i J u.~ UJJ1P~L.LU41b XC5gVU~.151

detectdms given in Section 1.2 differentiated between

detectors that had single-iand,,lmiitiple-scan capabilities,

this difference i8 not reflected in the diagram. .With-the

exception of Kimball's paper (1963), all reeearohlpapeuu

considered in this literature review take as given the

capabilities of the detector and do not distinguish single-

scan versus multiple-scan effects. Research is needed in

this area to understand the behavior of operationally use-

ful devices, e.g., the effect of multiple scans, independence

between successive looks, etc.

4. Optimization criteria will, in general, depend upon

the objective of the operation. If additional action is

to be taken after detection, then neither the maximization

of the probability of detection nor the minimization of the

expected search time may be optimal for the combined opera-

tion. Research should be devoted to the structuring of

the total activity, which includes search, detection, track,

and ensuing action, before selectiVg the optimization cri-

teria. For example, search activity can readily be inter-

faced with the combat activity which results from mutual

detection.
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5. The output of many of the Optimization seirch studies
has been the fix-a,4 to of n tO •E•L'.A, in a box. une
might instead consider the likely possibility that the
&ctual search time will be a random variable and examine
its effect on the optimal policy. It is not unlikely that
searchers may have various modes of operation, each of
which has a characteristic distribution of search time as
well as associated Type I and II errors.

6. The likelihood that searchers will not (or cannot)
follow optimal search procedures suggests research be devoted
to the problem of converting theoretical results into

practical rules of application.

p..,
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